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Abstract— Parking is a big problem especially in populated
cities. It is sometimes very difficult to find free on-street parking
spots. Drivers have to do a blind search to find a free spot. Blind
searching is not only time and fuel consuming, but also causes
traffic congestion. Indoor parking garages have sensors or light
systems to indicate free spots. However, indoor approach cannot
be used for the on-street parking problem. To solve this, an
image processing system is developed, and available parking
spots nearby are detected using deep convolutional neural
networks. With the help of road-side cameras, the system is first
trained to detect free street parking spots. After the training
phase, a frame taken from a roadside camera is analyzed
whether there is a free spot or not. A mobile application is also
developed which takes the request and triggers the
corresponding road-side camera, and then notifies the driver
about the available parking spots around the region.

Keywords—Deep Learning, On-Street Parking, Parking Spot
Detection, Image Processing, Neural Network

I. INTRODUCTION

Nowadays, mobile applications and Internet of Things
(IoTs) have found their place in many aspects of our daily
lives. Thanks to constant improvements in hardware, both in
computation power and price, make these devices even more
ubiquitous. Parking management with [oT is also gaining
popularity and significance.

Finding a free on-street parking spot is an everyday chore
for drivers in populated cities. The traditional method of
circling around the parking lots or streets to find a spot (blind
search) is inefficient, time-consuming, and frustrating. In a
recent study [1], it is indicated that the 30% of traffic
congestion in crowded cities is caused by drivers searching for
parking spots which last about 7.8 minutes for each attempt.
In addition, blind searching also increases fuel consumption
and carbon dioxide level in the air.

In this paper, we propose a smart city parking management
solution. In our solution, an image processing system is
developed, and available parking spots nearby are detected
using Convolutional Neural Networks (CNN). In our
approach, streets are monitored by the road-side unit cameras
and street images are collected for the learning phase of
CNNs. As the proof-of-concept, a camera is placed on top of
a building to monitor the sample street shown in Fig.1. As it
can be seen in Fig.1, the chosen street has many features. It
has both parking and non-parking spots as well as a street
intersection. This street was chosen because of these features
since it is a perfect example for the proof-of-concept. The
sample street shown in Fig. 1 is an excellent case to prove the
system to work in real time. The camera takes images of the
street and, these images are used to train the system.
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Fig. 1. Sample Street Image

Unlike other indoor and outdoor systems, our system does not
need any markers such as parking spot lines between cars; our
concern is only to detect parked cars or empty spots. With our
approach, our system is easily adaptable for any street without
spot lines.

An image dataset from our sample street is collected, our
system is trained with these images. After the training phase,
upon a request made by a driver via our mobile application,
the current image of the street is taken and analyzed for free
on-street parking spots. Our mobile application sends a
notification to the driver about available free parking spots and
shows the optimum route to the spot. When a driver leaves the
spot, he/she can use the system to locate his/her car on his/her
return.

II. BACKGROUND

Parking spot detection problem has different solutions such
as with sensors [2, 3], video analytics [4], and laser line
scanners [5]. Each approach has advantages and
disadvantages. Some typical properties of these approaches
are as follows:

e  Most of them use sensors, lasers, or other hardware to
detect if there is a car in the spot or not. This method
requires sensors for every parking spot and not applicable
for outdoor. However, in indoor parking like mall
garages, it is much easier to set up and use, but more
expensive for the outdoor parking case.

e Conventional video/image processing approaches have a
problem with non-parking spots. They cannot identify
non-parking spots from parking spots. For example,
conventional approaches perceive garage entrances as a
parking spot.

e Moreover, conventional approaches only detect a free
spot after a car leaves it. If that spot is already is free, they
cannot perceive that.

One of the most known on-street parking systems is funded
by the U.S., whose name is SFPark [6]. This project has a



total budget of 4.2 million dollars, and it adopts a wireless
sensor network structure. Parking sensors and parking meters
collect data via a wireless network. According to the authors,
SFPark reduces the searching time 43% and, this affects the
traffic positively. Traffic is reduced by 8%. Despite the
success of the project, due to the high cost of sensors, SFPark
did not spread across the country.

If we compare the sensor versus vision-based approach, we
can clearly say that vision-based model is much more cost
efficient. As video/image processing-based approach, CNN
can be a promising solution to park management problem.
CNN is used to classify images, cluster them by similarity, and
perform object recognition. CNN was firstly introduced in [7]
to recognize handwritten ZIP code in 1989, and later extended
to recognition and classification of various objects such as
hand-written digits [8], house numbers [9], traffic signs [10],
and more recently 1000-category ImageNet dataset [11]. One
of the related works, Parking-Stall Vacancy Indicator System
[12] uses CNN to label parking spots.

In Parking-Stall Vacancy Indicator System [12], authors
also attempt to solve the outdoor parking problem. Our
proposed system is a vision-based approach which uses CNN
similar to [12]. However, the work in [12] focuses on
detecting the parking stalls, not the empty spots. On the other
hand, our system is capable of empty on-street spots and does
not have a limitation of parking stalls like the work in [12].
Due to this feature, our proposed system can easily be adapted
to any outdoor area.

III. PROPOSED SYSTEM

In this work, an image processing model is created to find
free parking spots in the chosen sample street by using deep
learning techniques unlike other parking spot detection
solutions. Moreover, one of the project’s aim is to show that,
with a small dataset, deep learning is applicable to this kind of
problem. To achieve this, a deep learning model and mobile
application are created.
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Fig. 2. Overview of Proposed System.

Before giving the details of the model and mobile
application, we first present the overview and the flowchart of
the proposed system in Fig. 2 and Fig. 3, respectively. When
user clicks the “Free Parking Spot Detection” button, it
triggers an HTTP Request from the server, server request from
camera current picture of the area then camera takes picture
and sends it to the server. Server processes this image and

colors it, sends the processed image back to the mobile
application.
The flow of image classification shown in Fig. 4 is as
follows:
1. Defining the problem and collecting the data for this
problem. Regarding outdoor parking spot detection,
we collect images of the street with parked cars.

2. Labeling input images for different cases. It is a better
approach to label images manually, after the labeling
step, deep learning model can learn and start to make
predictions by itself.

3. Training the system with the labeled training set,
classifier can learn each class and their properties.
This part is explained in more detail.

4. Last step, testing the model by asking the classifier to
predict new images which has never beed used before.
By this way, the success rate can be calculated.

To get the best and stabilized results, a classifier which is
specified above for this task is developed. To create this new
classifier, CNNs are chosen instead of picking parameters
manually. Note that CNN can identify parameters by itself and
no parameters can be missed.
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Fig. 3. Flowchart of Proposed System.

A. Data Gathering

In this work, images categorized as “has a car in it” and
“has not a car in it”. It is important to have 2 categories
because unlike other approaches, this approach is not object
detection. It is an image classification, which understands is
there a car or not in the selected area. To create a dataset,
images of the selected street is captured manually. There are
couple of important factors which should not be disregarded.



First one is, images should be captured from a higher point to
create bird’s eye view with angle. This is an important point
because, the plan is to integrate this model to already existed
road-side units. When images are captured, this point has been
cared. The second one is, images should be collected from a
place where this model can be applied, because one of the
purposes of this project’s aim is to make this system work with
a small dataset. If a dataset is collected from the place which
is intended to implement the system, the latency is shorter.
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Fig. 4 Flowchart of Image Classification

B. Data Labeling

After collecting data from sample street, the second step is
to label the data. Data must be labeled because supervised
deep learning algorithms classify images according to the
labels. In this work, there are 2 labels so that all images should
be labeled with one of them. Images cropped one by one into
little images which only contain car or road in it. Images with
cars in it go in to “car” folder shown in Fig. 5 and images with
no car in it goes into “road” folder shown in Fig. 6. Note that
we do the labeling process manually.
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Fig. 6. Road Labeled Dataset

C. CNN Design
During model design, 3D RGB arrays are used to represent
images shown in Fig. 7. For feature extraction, convolution is

used. In the convolution step, there is a kernel as known as
feature detector which traverses all around the image and
creates new images.

frg= | r@gt-ar "

Kernel uses (1) to create new images. In Keras API [13],
there is a spatial convolution layer which is called Conv2D.
By using Conv2D, with 3 by 3 kernel and 32 feature detectors
for each image, 32 different feature maps are created. Then,
the first convolutional layer is completed and 32 feature maps
for every image are created.
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An object’s image can be taken at different angles and
distances. However, all images of the same object have the
same features, like having two headlights, big front window,
mirrors and etc. Pooling layers helps to find those features and
make them stand out. With the help of pooling, even if the
input has a different shape from other inputs, the model can
still recognize it. We used MaxPooling2D [13] layer. Max
pooling is a sample-based discretization process which down-
samples an input representation (image, hidden-layer output
matrix, etc.) shown in Fig. 9, reduces its dimensionality and
allows features contained in the sub-regions binned.

As it can be seen in the Fig. 9., Max Pooling down-samples
the Feature Map which is created at Convolutional Layer,
finds the maximum number in the pool, and creates a newly
created Pooled Feature Map. In this work, Max Pooling pool
is chosen as 2 by 2 because the dataset which this model works
on is a small one. While max pooling features stand out, some
features could be lost. Due to this, small pool size is used.



Next, we flaten the pooled feature maps. Flattening [13] is
a very simple method to convert 2D or 3D arrays into 1D
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Fig. 11.  Artificial Neural Network
because in full connection layer the image will be the input to
ANN. ANN can only take 1D array as an input.

Full Connection Layer is the last part of the CNN. After
convolving image, to start to the learning process, input
simply put in an ANN. In ANN, first there is an input layer, it
takes the flattened image as an input. There is an activation
function which lets or not an input to go to the next neuron.
Every neuron takes the information from the previous neuron
by multiplying it with a number which is close to zero.
Information flows from neuron to neuron for the whole neural
network. It gets to the output layer and calculates accuracy and
loss. After that, neural network back propagates this loss and
accuracy to the previous layers and layers change the weights
of information, in each epoch and calculate new accuracy and
loss. ANN repeats this for the number of epochs which is
defined before. When a new image comes, the system first
convolves it, applies max pooling, then flattens it, and lastly
classifies the image.

D. Mobile & Server-Side Applications

A mobile application is developed which takes parking spot
request from the user, sends the request to the server. When
the server receives this request, it triggers a web-service from
server-side. It takes a snapshot of that moment with the
selected area’s camera. This snapshot is used by CNN which
is also in the server-side to detect free spots and cars. CNN

scans the area for cars. If there is a car in that area, the area is
painted as blue, else it is painted as green.

As mentioned above, in the setup of the system, parkable
areas must be specified. Doing this specification, street
perspective must be considered. An example street
perspective is shown in Fig. 12.

To calculate the change rate in street perspective, Eq. (2) is
used.
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To apply this formula to the image, first a rectangle is
drawn as half of the size of the first car shown in the bottom
of Fig. 12. While sliding this rectangle from bottom to top in
y-axis for every pixel, Xpexr = Xprey — Change_Rate
formula is used and rectangle area is rescaled. Note that x; is
used as the first x,,.,,. By this way, a rectangle can traverse
the street perspective view. Every image block in the rectangle
area is sent to CNN for detection. If the rectangle area which
is sent to CNN contains a car in it, the blue layer of the
rectangle area is changed to 255. If no car is detected in that
area, then green layer of the rectangle is changed to 255. When
labeling the regions are completed, web-service returns the
colored image having regions with cars are painted in blue,
empty spots are painted in green.

Fig. 12. Representation of Street Perspective.

When web-service returns with the colored image, mobile
application is ready to inform the user. Mobile application is
designed by using React Native [14]. React Native is a
JavaScript framework for writing real, natively rendering
mobile applications for iOS and Android. It is based on React,
Facebook’s JavaScript library for building user interfaces, but
instead of targeting the browser, it targets mobile platforms.
In this work, React Native is chosen because of its flexible,
simple design. Moreover, when an application is developed in
React Native, it can be published for IOS and Android at the
same time.

In the server-side, Python’s Flask-RESTful [15] extension
is used for building REST API. Flaskis a micro web
framework written in Python. This API takes the requests
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from the user, do the processes which are explained above,
and returns the results to the user.

The screenshots of the mobile application are shown in Fig.
13. The left-hand side image in Fig. 13 is the user interface for
the parking spot request. The right-hand side image in Fig. 13
is the result of the free parking spot detection. As it can be
seen in Fig. 13, the developed mobile application is simple
and flat. User’s only concern is to click the button which is
labeled as “Find me a spot”, then a request is sent to the
server.

In server-side, there is a function which prepares rectangle
image with the size of half of a car and sends this rectangle
image to CNN. CNN’s only concern is to detect a car or free
spot in that rectangle image. After detection, CNN sends the
result to the server and server-side shifts the rectangle and
again sends the new rectangle image to CNN. This process
continues until the whole image is scanned. When all
rectangle images are processed, the original image is painted
according to the detections. The painted image is then sent
back to the mobile application. In Fig. 14, example outputs of
the system are presented.
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Fig. 13.  Screenshots of Mobile Application.

IV. TESTS AND RESULTS

While optimizing CNN, several different neural networks
with different activation functions are used to find out the best
result. In convolutional block, the neural network has 2D
Convolution and MaxPooling. 2D Convolutionals has 32 or
64 different kernels with 3 by 3 sizes. MaxPooling layers have
2 by 2 or 3 by 3 feature extractors. 3 different activation
functions (elu, selu, relu) are combined with convolutional
block. In Table I, test results are shown.

By analyzing test results, relu activation function gave the
best results and two convolutional blocks with 32 kernels with
3 by 3 sizes and MaxPooling with 2 by 2 feature extractors
maximize the test results. When one convolutional block is
used, enough features could not detect but when three
convolutional blocks, 64 kernels or 3 by 3 feature extractor
used, it caused overfitting. Tests are done with one or more
hidden layers. But the system started to overfit when hidden
layer number is increased. We tested different areas of the
same street at different angles and measured response times.
The average of total response time was measured as around

15s on a Windows running PC with 16GB RAM, Intel i7.7
2.8GHz processor.

Fig. 14.

Example Outputs.

TABLE 1. OPTIMIZATION OF CNN.

ANN with 0 Hidden Layer, 128 Neuron in

Input Layer x 10 epoch

elu selu relu
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V. CONCLUSION AND FUTURE WORK

In this paper, we showed that deep learning can be
efficiently applied to on-street parking management problem.
In this work, as a proof-of-concept, a single camera and one
street are used to evaluate the system.

As future works, the system will be extended with more
cameras to monitor more streets shown as in Fig. 15.
RaspberryPis will be considered for edge computing. The
server will be placed in the Cloud to make it accessible from
anywhere. In addition, the mobile application will have an
improved user interface such that user can choose the location
or system selects the closest location and give the results



according to closest parameters. The future system will have
navigation to the free spot, so that the user can easily find the
free spots from his/her location. Fig. 16 presents mockups of
future application.

In our current implementation, parkable regions are defined
manually and done in advance. In addition to the above
improvements, we will also automate the selecting parkable
regions in the street. Another learning algorithm which can
detect the road and the parkable road-sides automatically will
be developed to decrease human intervention.

USER

Fig. 15. Future System Illustration.
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Fig. 16. Mockups of Future Work in Mobile Application.
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