
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Deep Learning Based On-Street Parking

Spot Detection for Smart Cities

line 1: 4th Given Name Surname

Dilan Fatma Öncevarlık1, Kemal Doruk Yıldız2 and Sezer Gören3

Department of Computer Engineering,

Yeditepe University,

Ataşehir, Istanbul, Turkey
1dilanfatma.oncevarlik@std.yeditepe.edu.tr

2kemaldoruk.yildiz@std.yeditepe.edu.tr
3sgoren@cse.yeditepe.edu.tr

e 1: 5th Given Na

Abstract— Parking is a big problem especially in populated

cities. It is sometimes very difficult to find free on-street parking

spots. Drivers have to do a blind search to find a free spot. Blind

searching is not only time and fuel consuming, but also causes

traffic congestion. Indoor parking garages have sensors or light

systems to indicate free spots. However, indoor approach cannot

be used for the on-street parking problem. To solve this, an

image processing system is developed, and available parking

spots nearby are detected using deep convolutional neural

networks. With the help of road-side cameras, the system is first

trained to detect free street parking spots. After the training

phase, a frame taken from a roadside camera is analyzed

whether there is a free spot or not. A mobile application is also

developed which takes the request and triggers the

corresponding road-side camera, and then notifies the driver

about the available parking spots around the region.

Keywords—Deep Learning, On-Street Parking, Parking Spot

Detection, Image Processing, Neural Network

I. INTRODUCTION

Nowadays, mobile applications and Internet of Things

(IoTs) have found their place in many aspects of our daily

lives. Thanks to constant improvements in hardware, both in

computation power and price, make these devices even more

ubiquitous. Parking management with IoT is also gaining

popularity and significance.

Finding a free on-street parking spot is an everyday chore

for drivers in populated cities. The traditional method of

circling around the parking lots or streets to find a spot (blind

search) is inefficient, time-consuming, and frustrating. In a

recent study [1], it is indicated that the 30% of traffic

congestion in crowded cities is caused by drivers searching for

parking spots which last about 7.8 minutes for each attempt.

In addition, blind searching also increases fuel consumption

and carbon dioxide level in the air.

In this paper, we propose a smart city parking management

solution. In our solution, an image processing system is

developed, and available parking spots nearby are detected

using Convolutional Neural Networks (CNN). In our

approach, streets are monitored by the road-side unit cameras

and street images are collected for the learning phase of

CNNs. As the proof-of-concept, a camera is placed on top of

a building to monitor the sample street shown in Fig.1. As it

can be seen in Fig.1, the chosen street has many features. It

has both parking and non-parking spots as well as a street

intersection. This street was chosen because of these features

since it is a perfect example for the proof-of-concept. The

sample street shown in Fig. 1 is an excellent case to prove the

system to work in real time. The camera takes images of the

street and, these images are used to train the system.

Unlike other indoor and outdoor systems, our system does not

need any markers such as parking spot lines between cars; our

concern is only to detect parked cars or empty spots. With our

approach, our system is easily adaptable for any street without

spot lines.

An image dataset from our sample street is collected, our

system is trained with these images. After the training phase,

upon a request made by a driver via our mobile application,

the current image of the street is taken and analyzed for free

on-street parking spots. Our mobile application sends a

notification to the driver about available free parking spots and

shows the optimum route to the spot. When a driver leaves the

spot, he/she can use the system to locate his/her car on his/her

return.

II. BACKGROUND

Parking spot detection problem has different solutions such

as with sensors [2, 3], video analytics [4], and laser line

scanners [5]. Each approach has advantages and

disadvantages. Some typical properties of these approaches

are as follows:

• Most of them use sensors, lasers, or other hardware to

detect if there is a car in the spot or not. This method

requires sensors for every parking spot and not applicable

for outdoor. However, in indoor parking like mall

garages, it is much easier to set up and use, but more

expensive for the outdoor parking case.

• Conventional video/image processing approaches have a

problem with non-parking spots. They cannot identify

non-parking spots from parking spots. For example,

conventional approaches perceive garage entrances as a

parking spot.

• Moreover, conventional approaches only detect a free

spot after a car leaves it. If that spot is already is free, they

cannot perceive that.

One of the most known on-street parking systems is funded

by the U.S., whose name is SFPark [6]. This project has a

Fig. 1. Sample Street Image

total budget of 4.2 million dollars, and it adopts a wireless

sensor network structure. Parking sensors and parking meters

collect data via a wireless network. According to the authors,

SFPark reduces the searching time 43% and, this affects the

traffic positively. Traffic is reduced by 8%. Despite the

success of the project, due to the high cost of sensors, SFPark

did not spread across the country.

If we compare the sensor versus vision-based approach, we

can clearly say that vision-based model is much more cost

efficient. As video/image processing-based approach, CNN

can be a promising solution to park management problem.

CNN is used to classify images, cluster them by similarity, and

perform object recognition. CNN was firstly introduced in [7]

to recognize handwritten ZIP code in 1989, and later extended

to recognition and classification of various objects such as

hand-written digits [8], house numbers [9], traffic signs [10],

and more recently 1000-category ImageNet dataset [11]. One

of the related works, Parking-Stall Vacancy Indicator System

[12] uses CNN to label parking spots.

In Parking-Stall Vacancy Indicator System [12], authors

also attempt to solve the outdoor parking problem. Our

proposed system is a vision-based approach which uses CNN

similar to [12]. However, the work in [12] focuses on

detecting the parking stalls, not the empty spots. On the other

hand, our system is capable of empty on-street spots and does

not have a limitation of parking stalls like the work in [12].

Due to this feature, our proposed system can easily be adapted

to any outdoor area.

III. PROPOSED SYSTEM

In this work, an image processing model is created to find

free parking spots in the chosen sample street by using deep

learning techniques unlike other parking spot detection

solutions. Moreover, one of the project’s aim is to show that,

with a small dataset, deep learning is applicable to this kind of

problem. To achieve this, a deep learning model and mobile

application are created.

Before giving the details of the model and mobile

application, we first present the overview and the flowchart of

the proposed system in Fig. 2 and Fig. 3, respectively. When

user clicks the “Free Parking Spot Detection” button, it

triggers an HTTP Request from the server, server request from

camera current picture of the area then camera takes picture

and sends it to the server. Server processes this image and

colors it, sends the processed image back to the mobile

application.

The flow of image classification shown in Fig. 4 is as

follows:
1. Defining the problem and collecting the data for this

problem. Regarding outdoor parking spot detection,
we collect images of the street with parked cars.

2. Labeling input images for different cases. It is a better
approach to label images manually, after the labeling
step, deep learning model can learn and start to make
predictions by itself.

3. Training the system with the labeled training set,
classifier can learn each class and their properties.
This part is explained in more detail.

4. Last step, testing the model by asking the classifier to
predict new images which has never beed used before.
By this way, the success rate can be calculated.

To get the best and stabilized results, a classifier which is

specified above for this task is developed. To create this new

classifier, CNNs are chosen instead of picking parameters

manually. Note that CNN can identify parameters by itself and

no parameters can be missed.

A. Data Gathering

In this work, images categorized as “has a car in it” and

“has not a car in it”. It is important to have 2 categories

because unlike other approaches, this approach is not object

detection. It is an image classification, which understands is

there a car or not in the selected area. To create a dataset,

images of the selected street is captured manually. There are

couple of important factors which should not be disregarded.

Fig. 2. Overview of Proposed System.

Fig. 3. Flowchart of Proposed System.

First one is, images should be captured from a higher point to

create bird’s eye view with angle. This is an important point

because, the plan is to integrate this model to already existed

road-side units. When images are captured, this point has been

cared. The second one is, images should be collected from a

place where this model can be applied, because one of the

purposes of this project’s aim is to make this system work with

a small dataset. If a dataset is collected from the place which

is intended to implement the system, the latency is shorter.

B. Data Labeling

After collecting data from sample street, the second step is

to label the data. Data must be labeled because supervised

deep learning algorithms classify images according to the

labels. In this work, there are 2 labels so that all images should

be labeled with one of them. Images cropped one by one into

little images which only contain car or road in it. Images with

cars in it go in to “car” folder shown in Fig. 5 and images with

no car in it goes into “road” folder shown in Fig. 6. Note that

we do the labeling process manually.

C. CNN Design

During model design, 3D RGB arrays are used to represent

images shown in Fig. 7. For feature extraction, convolution is

used. In the convolution step, there is a kernel as known as
feature detector which traverses all around the image and

creates new images.

𝑓 ∗ 𝑔 ≡ ∫ 𝑓(𝜏) 𝑔(𝑡 − 𝜏) 𝑑𝜏
∞

−∞

()

Kernel uses (1) to create new images. In Keras API [13],

there is a spatial convolution layer which is called Conv2D.

By using Conv2D, with 3 by 3 kernel and 32 feature detectors

for each image, 32 different feature maps are created. Then,

the first convolutional layer is completed and 32 feature maps

for every image are created.

An object’s image can be taken at different angles and

distances. However, all images of the same object have the

same features, like having two headlights, big front window,

mirrors and etc. Pooling layers helps to find those features and

make them stand out. With the help of pooling, even if the

input has a different shape from other inputs, the model can

still recognize it. We used MaxPooling2D [13] layer. Max

pooling is a sample-based discretization process which down-

samples an input representation (image, hidden-layer output

matrix, etc.) shown in Fig. 9, reduces its dimensionality and

allows features contained in the sub-regions binned.

As it can be seen in the Fig. 9., Max Pooling down-samples

the Feature Map which is created at Convolutional Layer,

finds the maximum number in the pool, and creates a newly

created Pooled Feature Map. In this work, Max Pooling pool

is chosen as 2 by 2 because the dataset which this model works

on is a small one. While max pooling features stand out, some

features could be lost. Due to this, small pool size is used.

Fig. 4 Flowchart of Image Classification

Fig. 5. Car Labeled Dataset

Fig. 6. Road Labeled Dataset

Fig. 7. Image to RGB Array

Fig. 8. 32 Feature Detectors Applied on Image

Next, we flaten the pooled feature maps. Flattening [13] is

a very simple method to convert 2D or 3D arrays into 1D

array,

because in full connection layer the image will be the input to

ANN. ANN can only take 1D array as an input.

Full Connection Layer is the last part of the CNN. After

convolving image, to start to the learning process, input

simply put in an ANN. In ANN, first there is an input layer, it

takes the flattened image as an input. There is an activation

function which lets or not an input to go to the next neuron.

Every neuron takes the information from the previous neuron

by multiplying it with a number which is close to zero.

Information flows from neuron to neuron for the whole neural

network. It gets to the output layer and calculates accuracy and

loss. After that, neural network back propagates this loss and

accuracy to the previous layers and layers change the weights

of information, in each epoch and calculate new accuracy and

loss. ANN repeats this for the number of epochs which is

defined before. When a new image comes, the system first

convolves it, applies max pooling, then flattens it, and lastly

classifies the image.

D. Mobile & Server-Side Applications

A mobile application is developed which takes parking spot

request from the user, sends the request to the server. When

the server receives this request, it triggers a web-service from

server-side. It takes a snapshot of that moment with the

selected area’s camera. This snapshot is used by CNN which

is also in the server-side to detect free spots and cars. CNN

scans the area for cars. If there is a car in that area, the area is

painted as blue, else it is painted as green.

As mentioned above, in the setup of the system, parkable

areas must be specified. Doing this specification, street

perspective must be considered. An example street

perspective is shown in Fig. 12.

 To calculate the change rate in street perspective, Eq. (2) is

used.

 To apply this formula to the image, first a rectangle is

drawn as half of the size of the first car shown in the bottom

of Fig. 12. While sliding this rectangle from bottom to top in

y-axis for every pixel, 𝑥𝑛𝑒𝑥𝑡 = 𝑥𝑝𝑟𝑒𝑣 − 𝐶ℎ𝑎𝑛𝑔𝑒_𝑅𝑎𝑡𝑒

formula is used and rectangle area is rescaled. Note that 𝑥1 is

used as the first 𝑥𝑝𝑟𝑒𝑣 . By this way, a rectangle can traverse

the street perspective view. Every image block in the rectangle

area is sent to CNN for detection. If the rectangle area which

is sent to CNN contains a car in it, the blue layer of the

rectangle area is changed to 255. If no car is detected in that

area, then green layer of the rectangle is changed to 255. When

labeling the regions are completed, web-service returns the

colored image having regions with cars are painted in blue,

empty spots are painted in green.

When web-service returns with the colored image, mobile

application is ready to inform the user. Mobile application is

designed by using React Native [14]. React Native is a

JavaScript framework for writing real, natively rendering

mobile applications for iOS and Android. It is based on React,

Facebook’s JavaScript library for building user interfaces, but

instead of targeting the browser, it targets mobile platforms.

In this work, React Native is chosen because of its flexible,

simple design. Moreover, when an application is developed in

React Native, it can be published for IOS and Android at the

same time.

In the server-side, Python’s Flask-RESTful [15] extension

is used for building REST API. Flask is a micro web

framework written in Python. This API takes the requests

𝐶ℎ𝑎𝑛𝑔𝑒_𝑅𝑎𝑡𝑒 = |
𝑌

∆𝑥
 | , ∆𝑥 = 𝑥1 − 𝑥2

()

Fig. 9. Max Pooling.

Fig. 10. Flattening.

Fig. 11. Artificial Neural Network

Fig. 12. Representation of Street Perspective.

http://www.wikizero.biz/index.php?q=aHR0cHM6Ly9lbi53aWtpcGVkaWEub3JnL3dpa2kvV2ViX2ZyYW1ld29yaw
http://www.wikizero.biz/index.php?q=aHR0cHM6Ly9lbi53aWtpcGVkaWEub3JnL3dpa2kvV2ViX2ZyYW1ld29yaw
http://www.wikizero.biz/index.php?q=aHR0cHM6Ly9lbi53aWtpcGVkaWEub3JnL3dpa2kvUHl0aG9uXyhwcm9ncmFtbWluZ19sYW5ndWFnZSk

from the user, do the processes which are explained above,

and returns the results to the user.

The screenshots of the mobile application are shown in Fig.

13. The left-hand side image in Fig. 13 is the user interface for

the parking spot request. The right-hand side image in Fig. 13

is the result of the free parking spot detection. As it can be

seen in Fig. 13, the developed mobile application is simple

and flat. User’s only concern is to click the button which is

labeled as “Find me a spot”, then a request is sent to the

server.

In server-side, there is a function which prepares rectangle

image with the size of half of a car and sends this rectangle

image to CNN. CNN’s only concern is to detect a car or free

spot in that rectangle image. After detection, CNN sends the

result to the server and server-side shifts the rectangle and

again sends the new rectangle image to CNN. This process

continues until the whole image is scanned. When all

rectangle images are processed, the original image is painted

according to the detections. The painted image is then sent

back to the mobile application. In Fig. 14, example outputs of

the system are presented.

IV. TESTS AND RESULTS

While optimizing CNN, several different neural networks
with different activation functions are used to find out the best
result. In convolutional block, the neural network has 2D
Convolution and MaxPooling. 2D Convolutionals has 32 or
64 different kernels with 3 by 3 sizes. MaxPooling layers have
2 by 2 or 3 by 3 feature extractors. 3 different activation
functions (elu, selu, relu) are combined with convolutional
block. In Table I, test results are shown.

By analyzing test results, relu activation function gave the
best results and two convolutional blocks with 32 kernels with
3 by 3 sizes and MaxPooling with 2 by 2 feature extractors
maximize the test results. When one convolutional block is
used, enough features could not detect but when three
convolutional blocks, 64 kernels or 3 by 3 feature extractor
used, it caused overfitting. Tests are done with one or more
hidden layers. But the system started to overfit when hidden
layer number is increased. We tested different areas of the
same street at different angles and measured response times.
The average of total response time was measured as around

15s on a Windows running PC with 16GB RAM, Intel i7.7
2.8GHz processor.

TABLE I. OPTIMIZATION OF CNN.

V. CONCLUSION AND FUTURE WORK

In this paper, we showed that deep learning can be

efficiently applied to on-street parking management problem.

In this work, as a proof-of-concept, a single camera and one

street are used to evaluate the system.

As future works, the system will be extended with more

cameras to monitor more streets shown as in Fig. 15.

RaspberryPis will be considered for edge computing. The

server will be placed in the Cloud to make it accessible from

anywhere. In addition, the mobile application will have an

improved user interface such that user can choose the location

or system selects the closest location and give the results

ANN with 0 Hidden Layer, 128 Neuron in

Input Layer x 10 epoch

elu selu relu

1x(Conv2D(32,(3x3)),

MaxPooling(2x2))
76% 56% 86%

2x(Conv2D(32,(3x3)),

MaxPooling(2x2))
86% 62% 92%

3x(Conv2D(32,(3x3)),

MaxPooling(2x2))
80% 54% 82%

1x(Conv2D(64,(3x3)),

MaxPooling(2x2))
76% 42% 82%

2x(Conv2D(64,(3x3)),

MaxPooling(2x2))
84% 48% 90%

3x(Conv2D(64,(3x3)),

MaxPooling(2x2))
72% 44% 76%

1x(Conv2D(32,(3x3)),

MaxPooling(3x3))
74% 48% 74%

2x(Conv2D(32,(3x3)),

MaxPooling(3x3))
70% 54% 78%

3x(Conv2D(32,(3x3)),

MaxPooling(3x3))
66% 52% 70%

1x(Conv2D(64,(3x3)),

MaxPooling(3x3))
68% 34% 72%

2x(Conv2D(64,(3x3)),

MaxPooling(3x3))
70% 38% 76%

3x(Conv2D(64,(3x3)),

MaxPooling(3x3))
60% 36% 68%

Fig. 13. Screenshots of Mobile Application.

Fig. 14. Example Outputs.

according to closest parameters. The future system will have

navigation to the free spot, so that the user can easily find the

free spots from his/her location. Fig. 16 presents mockups of

future application.

In our current implementation, parkable regions are defined

manually and done in advance. In addition to the above

improvements, we will also automate the selecting parkable

regions in the street. Another learning algorithm which can

detect the road and the parkable road-sides automatically will

be developed to decrease human intervention.

REFERENCES

[1] Richard Arnott and Eren Inci. “An integrated model of downtown
parking and traffic congestion,” Journal of Urban Economics, vol. 60,
no. 3, pp. 418–442, 2006.

[2] R. L. P. B. Cristian Roman, “Detecting On-Street Parking Spaces in
Smart Cities: Performance Evaluation of Fixed and Mobile Sensing
Systems,” IEEE Transactions on Intelligent Transportation Systems,
vol. 19, no. 7, pp. 2234 – 2245, 2018.

[3] U. Fastenrath, “Parking space detection,” [Online]. Available:
https://patents.google.com/patent/US6266609B1/en. [Accessed 02/15/
2019].

[4] X. Sevillano, E. Màrmol, V. Fernandez-Arguedas, “Towards smart
traffic management systems: Vacant on-street parking spot detection
based on video analytics,” 17th International Conference on
Information Fusion (FUSION), pp. 1-8, 2014.

[5] J. Zhou, L. E. Navarro-Serment, M. Hebert, “Detection of parking
spots using 2D range data,” 15th International IEEE Conference on
Intelligent Transportation Systems, pp. 1280 – 1287, 2012.

[6] Daniel G. Chatmana, M. Manville, “Theory versus implementation in
congestion-priced parking: An evaluation of SFpark, 2011–2012,”
Research in Transportation Economics, vol.44, pp. 52-60, 2014.

[7] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W.
Hubbard, and L. D. Jackel, “Backpropagation applied to handwritten
zip code recognition,” Neural computation, 1(4):541–551, 1989.

[8] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient based
learning applied to document recognition,” Proceedings of the IEEE,
vol. 86, no. 11, pp. 2278–2324, 1998.

[9] P. Sermanet, S. Chintala, and Y. LeCun, “Convolutional neural
networks applied to house numbers digit classification,” IEEE 21st
International Conference on Pattern Recognition (ICPR), pp. 3288–
3291, 2012.

[10] P. Sermanet and Y. LeCun, “Traffic sign recognition with multi-scale
convolutional networks,” International Joint Conference Neural
Networks (IJCNN), pp. 2809–2813, 2011.

[11] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” Advances in Neural
Information Processing Systems, pp.1097–1105, 2012.

[12] M. S. E. S. M. J. Sepehr Valipour, "Parking-Stall Vacancy Indicator
System, Based on Deep Convolutional Neural Networks," IEEE 3rd
World Forum on Internet of Things (WF-IoT) , pp. 655 – 660, 2016.

[13] Keras, “Keras: The Python Deep Learning library,” [online] Available:
https://keras.io/

[14] B. Eisenman, “Learning React Native.” O'Reilly | Safari, O'Reilly
Media, Inc., www.oreilly.com/library/view/learning-react-
native/9781491929049/ch01.html, 2019.

[15] K. Burke, K. Conroy, R. Horn, F. Stratton, G. Bine, “Flask RESTful,”
[online] Available: https://flask-restful.readthedocs.io/en/latest/, 2018.

Fig. 15. Future System Illustration.

Fig. 16. Mockups of Future Work in Mobile Application.

https://keras.io/
http://www.oreilly.com/library/view/learning-react-native/9781491929049/ch01.html
http://www.oreilly.com/library/view/learning-react-native/9781491929049/ch01.html
https://flask-restful.readthedocs.io/en/latest/

