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Abstract— Parking is a big problem especially in populated 

cities. It is sometimes very difficult to find free on-street parking 

spots. Drivers have to do a blind search to find a free spot. Blind 

searching is not only time and fuel consuming, but also causes 

traffic congestion. Indoor parking garages have sensors or light 

systems to indicate free spots. However, indoor approach cannot 

be used for the on-street parking problem. To solve this, an 

image processing system is developed, and available parking 

spots nearby are detected using deep convolutional neural 

networks.  With the help of road-side cameras, the system is first 

trained to detect free street parking spots. After the training 

phase, a frame taken from a roadside camera is analyzed 

whether there is a free spot or not. A mobile application is also 

developed which takes the request and triggers the 

corresponding road-side camera, and then notifies the driver 

about the available parking spots around the region.  

Keywords—Deep Learning, On-Street Parking, Parking Spot 

Detection, Image Processing, Neural Network 

I. INTRODUCTION  

Nowadays, mobile applications and Internet of Things 

(IoTs) have found their place in many aspects of our daily 

lives. Thanks to constant improvements in hardware, both in 

computation power and price, make these devices even more 

ubiquitous. Parking management with IoT is also gaining 

popularity and significance.  

Finding a free on-street parking spot is an everyday chore 

for drivers in populated cities. The traditional method of 

circling around the parking lots or streets to find a spot (blind 

search) is inefficient, time-consuming, and frustrating. In a 

recent study [1], it is indicated that the 30% of traffic 

congestion in crowded cities is caused by drivers searching for 

parking spots which last about 7.8 minutes for each attempt. 

In addition, blind searching also increases fuel consumption 

and carbon dioxide level in the air. 

In this paper, we propose a smart city parking management 

solution. In our solution, an image processing system is 

developed, and available parking spots nearby are detected 

using Convolutional Neural Networks (CNN). In our 

approach, streets are monitored by the road-side unit cameras 

and street images are collected for the learning phase of 

CNNs. As the proof-of-concept, a camera is placed on top of 

a building to monitor the sample street shown in Fig.1. As it 

can be seen in Fig.1, the chosen street has many features. It 

has both parking and non-parking spots as well as a street 

intersection. This street was chosen because of these features 

since it is a perfect example for the proof-of-concept. The 

sample street shown in Fig. 1 is an excellent case to prove the 

system to work in real time. The camera takes images of the 

street and, these images are used to train the system. 

Unlike other indoor and outdoor systems, our system does not 

need any markers such as parking spot lines between cars; our 

concern is only to detect parked cars or empty spots. With our 

approach, our system is easily adaptable for any street without 

spot lines. 

An image dataset from our sample street is collected, our 

system is trained with these images. After the training phase, 

upon a request made by a driver via our mobile application, 

the current image of the street is taken and analyzed for free 

on-street parking spots. Our mobile application sends a 

notification to the driver about available free parking spots and 

shows the optimum route to the spot. When a driver leaves the 

spot, he/she can use the system to locate his/her car on his/her 

return. 

 

II. BACKGROUND 

Parking spot detection problem has different solutions such 

as with sensors [2, 3], video analytics [4], and  laser line 

scanners [5]. Each approach has advantages and 

disadvantages. Some typical properties of these approaches 

are as follows:  

• Most of them use sensors, lasers, or other hardware to 

detect if there is a car in the spot or not. This method 

requires sensors for every parking spot and not applicable 

for outdoor. However, in indoor parking like mall 

garages, it is much easier to set up and use, but more 

expensive for the outdoor parking case. 

• Conventional video/image processing approaches have a 

problem with non-parking spots. They cannot identify 

non-parking spots from parking spots. For example, 

conventional approaches perceive garage entrances as a 

parking spot.  

• Moreover, conventional approaches only detect a free 

spot after a car leaves it. If that spot is already is free, they 

cannot perceive that.  

One of the most known on-street parking systems is funded 

by the U.S., whose name is SFPark [6].  This project has a 

Fig. 1. Sample Street Image 



total budget of 4.2 million dollars, and it adopts a wireless 

sensor network structure. Parking sensors and parking meters 

collect data via a wireless network. According to the authors, 

SFPark reduces the searching time 43% and, this affects the 

traffic positively. Traffic is reduced by 8%. Despite the 

success of the project, due to the high cost of sensors, SFPark 

did not spread across the country. 

If we compare the sensor versus vision-based approach, we 

can clearly say that vision-based model is much more cost 

efficient. As video/image processing-based approach, CNN 

can be a promising solution to park management problem. 

CNN is used to classify images, cluster them by similarity, and 

perform object recognition. CNN was firstly introduced in [7] 

to recognize handwritten ZIP code in 1989, and later extended 

to recognition and classification of various objects such as 

hand-written digits [8], house numbers [9], traffic signs [10], 

and more recently 1000-category ImageNet dataset [11]. One 

of the related works, Parking-Stall Vacancy Indicator System 

[12] uses CNN to label parking spots. 

In Parking-Stall Vacancy Indicator System [12], authors 

also attempt to solve the outdoor parking problem.  Our 

proposed system is a vision-based approach which uses CNN 

similar to [12]. However, the work in [12] focuses on 

detecting the parking stalls, not the empty spots. On the other 

hand, our system is capable of empty on-street spots and does 

not have a limitation of parking stalls like the work in [12]. 

Due to this feature, our proposed system can easily be adapted 

to any outdoor area. 

 

III. PROPOSED SYSTEM 

In this work, an image processing model is created to find 

free parking spots in the chosen sample street by using deep 

learning techniques unlike other parking spot detection 

solutions. Moreover, one of the project’s aim is to show that, 

with a small dataset, deep learning is applicable to this kind of 

problem. To achieve this, a deep learning model and mobile 

application are created. 

 

 
Before giving the details of the model and mobile 

application, we first present the overview and the flowchart of 

the proposed system in Fig. 2 and Fig. 3, respectively. When 

user clicks the “Free Parking Spot Detection” button, it 

triggers an HTTP Request from the server, server request from 

camera current picture of the area then camera takes picture 

and sends it to the server. Server processes this image and 

colors it, sends the processed image back to the mobile 

application. 

The flow of image classification shown in Fig. 4 is as 

follows:  
1. Defining the problem and collecting the data for this 

problem. Regarding outdoor parking spot detection, 
we collect images of the street with parked cars. 

2. Labeling input images for different cases. It is a better 
approach to label images manually, after the labeling 
step, deep learning model can learn and start to make 
predictions by itself.  

3. Training the system with the labeled training set, 
classifier can learn each class and their properties. 
This part is explained in more detail. 

4. Last step, testing the model by asking the classifier to 
predict new images which has never beed used before. 
By this way, the success rate can be calculated.  

To get the best and stabilized results, a classifier which is 

specified above for this task is developed. To create this new 

classifier, CNNs are chosen instead of picking parameters 

manually. Note that CNN can identify parameters by itself and 

no parameters can be missed.  

 

A. Data Gathering 

In this work, images categorized as “has a car in it” and 

“has not a car in it”. It is important to have 2 categories 

because unlike other approaches, this approach is not object 

detection. It is an image classification, which understands is 

there a car or not in the selected area. To create a dataset, 

images of the selected street is captured manually. There are 

couple of important factors which should not be disregarded. 

Fig. 2. Overview of Proposed System. 

Fig. 3. Flowchart of Proposed System. 



First one is, images should be captured from a higher point to 

create bird’s eye view with angle. This is an important point 

because, the plan is to integrate this model to already existed 

road-side units. When images are captured, this point has been 

cared. The second one is, images should be collected from a 

place where this model can be applied, because one of the 

purposes of this project’s aim is to make this system work with 

a small dataset. If a dataset is collected from the place which 

is intended to implement the system, the latency is shorter.  

 

B. Data Labeling 

After collecting data from sample street, the second step is 

to label the data. Data must be labeled because supervised 

deep learning algorithms classify images according to the 

labels. In this work, there are 2 labels so that all images should 

be labeled with one of them. Images cropped one by one into 

little images which only contain car or road in it. Images with 

cars in it go in to “car” folder shown in Fig. 5 and images with 

no car in it goes into “road” folder shown in Fig. 6. Note that 

we do the labeling process manually.  

 

 

C. CNN Design 

During model design, 3D RGB arrays are used to represent 

images shown in Fig. 7. For feature extraction, convolution is 

used. In the convolution step, there is a kernel as known as 
feature detector which traverses all around the image and 

creates new images.  

𝑓 ∗ 𝑔 ≡  ∫ 𝑓(𝜏) 𝑔(𝑡 − 𝜏) 𝑑𝜏
∞

−∞

 
 

() 

Kernel uses (1) to create new images. In Keras API [13], 

there is a spatial convolution layer which is called Conv2D. 

By using Conv2D, with 3 by 3 kernel and 32 feature detectors 

for each image, 32 different feature maps are created. Then, 

the first convolutional layer is completed and 32 feature maps 

for every image are created. 

 

 

An object’s image can be taken at different angles and 

distances. However, all images of the same object have the 

same features, like having two headlights, big front window, 

mirrors and etc. Pooling layers helps to find those features and 

make them stand out. With the help of pooling, even if the 

input has a different shape from other inputs, the model can 

still recognize it. We used MaxPooling2D [13] layer. Max 

pooling is a sample-based discretization process which down-

samples an input representation (image, hidden-layer output 

matrix, etc.) shown in Fig. 9, reduces its dimensionality and 

allows features contained in the sub-regions binned. 

As it can be seen in the Fig. 9., Max Pooling down-samples 

the Feature Map which is created at Convolutional Layer, 

finds the maximum number in the pool, and creates a newly 

created Pooled Feature Map. In this work, Max Pooling pool 

is chosen as 2 by 2 because the dataset which this model works 

on is a small one. While max pooling features stand out, some 

features could be lost. Due to this, small pool size is used.  

Fig. 4 Flowchart of Image Classification 

Fig. 5. Car Labeled Dataset 

Fig. 6. Road Labeled Dataset 

Fig. 7. Image to RGB Array 

Fig. 8. 32 Feature Detectors Applied on Image 



Next, we flaten the pooled feature maps. Flattening [13] is 

a very simple method to convert 2D or 3D arrays into 1D 

array, 

 

because in full connection layer the image will be the input to 

ANN. ANN can only take 1D array as an input.  

Full Connection Layer is the last part of the CNN. After 

convolving image, to start to the learning process, input 

simply put in an ANN. In ANN, first there is an input layer, it 

takes the flattened image as an input. There is an activation 

function which lets or not an input to go to the next neuron. 

Every neuron takes the information from the previous neuron 

by multiplying it with a number which is close to zero. 

Information flows from neuron to neuron for the whole neural 

network. It gets to the output layer and calculates accuracy and 

loss. After that, neural network back propagates this loss and 

accuracy to the previous layers and layers change the weights 

of information, in each epoch and calculate new accuracy and 

loss. ANN repeats this for the number of epochs which is 

defined before. When a new image comes, the system first 

convolves it, applies max pooling, then flattens it, and lastly 

classifies the image. 

 

D. Mobile & Server-Side Applications 

A mobile application is developed which takes parking spot 

request from the user, sends the request to the server. When 

the server receives this request, it triggers a web-service from 

server-side. It takes a snapshot of that moment with the 

selected area’s camera. This snapshot is used by CNN which 

is also in the server-side to detect free spots and cars. CNN 

scans the area for cars. If there is a car in that area, the area is 

painted as blue, else it is painted as green.  

As mentioned above, in the setup of the system, parkable 

areas must be specified. Doing this specification, street 

perspective must be considered. An example street 

perspective is shown in Fig. 12.  

 

 To calculate the change rate in street perspective, Eq. (2) is 

used. 

 

 To apply this formula to the image, first a rectangle is 

drawn as half of the size of the first car shown in the bottom 

of Fig. 12. While sliding this rectangle from bottom to top in 

y-axis for every pixel, 𝑥𝑛𝑒𝑥𝑡 = 𝑥𝑝𝑟𝑒𝑣 − 𝐶ℎ𝑎𝑛𝑔𝑒_𝑅𝑎𝑡𝑒 

formula is used and rectangle area is rescaled. Note that 𝑥1 is 

used as the first 𝑥𝑝𝑟𝑒𝑣 . By this way, a rectangle can traverse 

the street perspective view. Every image block in the rectangle 

area is sent to CNN for detection. If the rectangle area which 

is sent to CNN contains a car in it, the blue layer of the 

rectangle area is changed to 255. If no car is detected in that 

area, then green layer of the rectangle is changed to 255. When 

labeling the regions are completed, web-service returns the 

colored image having regions with cars are painted in blue, 

empty spots are painted in green. 

 

 
When web-service returns with the colored image, mobile 

application is ready to inform the user. Mobile application is 

designed by using React Native [14]. React Native is a 

JavaScript framework for writing real, natively rendering 

mobile applications for iOS and Android. It is based on React, 

Facebook’s JavaScript library for building user interfaces, but 

instead of targeting the browser, it targets mobile platforms. 

In this work, React Native is chosen because of its flexible, 

simple design. Moreover, when an application is developed in 

React Native, it can be published for IOS and Android at the 

same time.  

In the server-side, Python’s Flask-RESTful [15] extension 

is used for building REST API. Flask is a micro web 

framework written in Python. This API takes the requests 

𝐶ℎ𝑎𝑛𝑔𝑒_𝑅𝑎𝑡𝑒 = |
𝑌

∆𝑥
 | , ∆𝑥 = 𝑥1 − 𝑥2 

() 

 
Fig. 9. Max Pooling. 

Fig. 10. Flattening. 

Fig. 11. Artificial Neural Network 

Fig. 12. Representation of Street Perspective. 
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http://www.wikizero.biz/index.php?q=aHR0cHM6Ly9lbi53aWtpcGVkaWEub3JnL3dpa2kvV2ViX2ZyYW1ld29yaw
http://www.wikizero.biz/index.php?q=aHR0cHM6Ly9lbi53aWtpcGVkaWEub3JnL3dpa2kvUHl0aG9uXyhwcm9ncmFtbWluZ19sYW5ndWFnZSk


from the user, do the processes which are explained above, 

and returns the results to the user.  

The screenshots of the mobile application are shown in Fig. 

13. The left-hand side image in Fig. 13 is the user interface for 

the parking spot request. The right-hand side image in Fig. 13 

is the result of the free parking spot detection. As it can be 

seen in Fig. 13, the developed mobile application is simple 

and flat. User’s only concern is to click the button which is 

labeled as “Find me a spot”, then a request is sent to the 

server.  

In server-side, there is a function which prepares rectangle 

image with the size of half of a car and sends this rectangle 

image to CNN. CNN’s only concern is to detect a car or free 

spot in that rectangle image. After detection, CNN sends the 

result to the server and server-side shifts the rectangle and 

again sends the new rectangle image to CNN. This process 

continues until the whole image is scanned.  When all 

rectangle images are processed, the original image is painted 

according to the detections. The painted image is then sent 

back to the mobile application. In Fig. 14, example outputs of 

the system are presented. 

 

IV. TESTS AND RESULTS 

While optimizing CNN, several different neural networks 
with different activation functions are used to find out the best 
result. In convolutional block, the neural network has 2D 
Convolution and MaxPooling. 2D Convolutionals has 32 or 
64 different kernels with 3 by 3 sizes. MaxPooling layers have 
2 by 2 or 3 by 3 feature extractors. 3 different activation 
functions (elu, selu, relu) are combined with convolutional 
block. In Table I, test results are shown. 

By analyzing test results, relu activation function gave the 
best results and two convolutional blocks with 32 kernels with 
3 by 3 sizes and MaxPooling with 2 by 2 feature extractors 
maximize the test results. When one convolutional block is 
used, enough features could not detect but when three 
convolutional blocks, 64 kernels or 3 by 3 feature extractor 
used, it caused overfitting. Tests are done with one or more 
hidden layers. But the system started to overfit when hidden 
layer number is increased.  We tested different areas of the 
same street at different angles and measured response times. 
The average of total response time was measured as around 

15s on a Windows running PC with 16GB RAM, Intel i7.7 
2.8GHz processor.  

 

TABLE I. OPTIMIZATION OF CNN.  

 

V. CONCLUSION AND FUTURE WORK 

In this paper, we showed that deep learning can be 

efficiently applied to on-street parking management problem. 

In this work, as a proof-of-concept, a single camera and one 

street are used to evaluate the system.  

As future works, the system will be extended with more 

cameras to monitor more streets shown as in Fig. 15. 

RaspberryPis will be considered for edge computing. The 

server will be placed in the Cloud to make it accessible from 

anywhere. In addition, the mobile application will have an 

improved user interface such that user can choose the location 

or system selects the closest location and give the results 

  

ANN with 0 Hidden Layer, 128 Neuron in 

Input Layer x 10 epoch 

elu selu relu 

1x(Conv2D(32,(3x3)), 

MaxPooling(2x2)) 
76% 56% 86% 

2x(Conv2D(32,(3x3)), 

MaxPooling(2x2)) 
86% 62% 92% 

3x(Conv2D(32,(3x3)), 

MaxPooling(2x2)) 
80% 54% 82% 

1x(Conv2D(64,(3x3)), 

MaxPooling(2x2)) 
76% 42% 82% 

2x(Conv2D(64,(3x3)), 

MaxPooling(2x2)) 
84% 48% 90% 

3x(Conv2D(64,(3x3)), 

MaxPooling(2x2)) 
72% 44% 76% 

1x(Conv2D(32,(3x3)), 

MaxPooling(3x3)) 
74% 48% 74% 

2x(Conv2D(32,(3x3)), 

MaxPooling(3x3)) 
70% 54% 78% 

3x(Conv2D(32,(3x3)), 

MaxPooling(3x3)) 
66% 52% 70% 

1x(Conv2D(64,(3x3)), 

MaxPooling(3x3)) 
68% 34% 72% 

2x(Conv2D(64,(3x3)), 

MaxPooling(3x3)) 
70% 38% 76% 

3x(Conv2D(64,(3x3)), 

MaxPooling(3x3)) 
60% 36% 68% 

Fig. 13. Screenshots of Mobile Application. 

Fig. 14. Example Outputs. 



according to closest parameters. The future system will have 

navigation to the free spot, so that the user can easily find the 

free spots from his/her location. Fig. 16 presents mockups of 

future application. 

In our current implementation, parkable regions are defined 

manually and done in advance. In addition to the above 

improvements, we will also automate the selecting parkable 

regions in the street. Another learning algorithm which can 

detect the road and the parkable road-sides automatically will 

be developed to decrease human intervention.  

 

 

REFERENCES 

[1] Richard Arnott and Eren Inci. “An integrated model of downtown 
parking and traffic congestion,” Journal of Urban Economics, vol. 60, 
no. 3, pp. 418–442, 2006. 

[2] R. L. P. B. Cristian Roman, “Detecting On-Street Parking Spaces in 
Smart Cities: Performance Evaluation of Fixed and Mobile Sensing 
Systems,” IEEE Transactions on Intelligent Transportation Systems, 
vol. 19, no. 7, pp. 2234 – 2245, 2018. 

[3] U. Fastenrath, “Parking space detection,” [Online]. Available: 
https://patents.google.com/patent/US6266609B1/en. [Accessed 02/15/ 
2019]. 

[4] X. Sevillano, E. Màrmol, V. Fernandez-Arguedas, “Towards smart 
traffic management systems: Vacant on-street parking spot detection 
based on video analytics,”  17th International Conference on 
Information Fusion (FUSION), pp. 1-8, 2014. 

[5] J. Zhou, L. E. Navarro-Serment, M. Hebert, “Detection of parking 
spots using 2D range data,” 15th International IEEE Conference on 
Intelligent Transportation Systems, pp. 1280 – 1287, 2012. 

[6] Daniel G. Chatmana, M. Manville,  “Theory versus implementation in 
congestion-priced parking: An evaluation of SFpark, 2011–2012,” 
Research in Transportation Economics, vol.44, pp. 52-60, 2014. 

[7] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. 
Hubbard, and L. D. Jackel,  “Backpropagation applied to handwritten 
zip code recognition,” Neural computation, 1(4):541–551, 1989. 

[8] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient based 
learning applied to document recognition,” Proceedings of the IEEE, 
vol. 86, no. 11, pp. 2278–2324, 1998. 

[9] P. Sermanet, S. Chintala, and Y. LeCun, “Convolutional neural 
networks applied to house numbers digit classification,” IEEE 21st 
International Conference on Pattern Recognition (ICPR),  pp. 3288–
3291, 2012. 

[10] P. Sermanet and Y. LeCun, “Traffic sign recognition with multi-scale 
convolutional networks,” International Joint Conference Neural 
Networks (IJCNN), pp. 2809–2813, 2011. 

[11] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification 
with deep convolutional neural networks,” Advances in Neural 
Information Processing Systems, pp.1097–1105, 2012. 

[12] M. S. E. S. M. J. Sepehr Valipour, "Parking-Stall Vacancy Indicator 
System, Based on Deep Convolutional Neural Networks," IEEE 3rd 
World Forum on Internet of Things (WF-IoT) , pp. 655 – 660, 2016. 

[13] Keras, “Keras: The Python Deep Learning library,”  [online] Available: 
https://keras.io/ 

[14] B. Eisenman, “Learning React Native.” O'Reilly | Safari, O'Reilly 
Media, Inc., www.oreilly.com/library/view/learning-react-
native/9781491929049/ch01.html, 2019. 

[15] K. Burke, K. Conroy, R. Horn, F. Stratton, G. Bine, “Flask RESTful,” 
[online] Available: https://flask-restful.readthedocs.io/en/latest/, 2018. 

 

 

Fig. 15. Future System Illustration. 

Fig. 16. Mockups of Future Work in Mobile Application. 

https://keras.io/
http://www.oreilly.com/library/view/learning-react-native/9781491929049/ch01.html
http://www.oreilly.com/library/view/learning-react-native/9781491929049/ch01.html
https://flask-restful.readthedocs.io/en/latest/

